
Implementing Molecular Dynamics on Hybrid High Performance Computers -
Three-Body Potentials

W. Michael Browna,∗, Masako Yamadab

aNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
bGE Global Research, 1 Research Circle K1-3A17A, Nisakyuna, New York, USA

Abstract

The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing
applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re-
quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point
processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive
research into methods to use accelerators efficiently to improve the performance of molecular dynamics (MD) codes employing
pairwise potential energy models, little is reported in the literature for models that include many-body effects. 3-body terms are
required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and
others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for
efficient algorithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for
3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on
hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation
of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E
water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on
Titan for production simulations to study water droplet freezing on a surface.

Keywords:
Molecular dynamics, 3-body, GPU, coprocessor, accelerator, Stillinger-Weber

1. Introduction

Issues with power consumption, heat dissipation, and high
memory access latencies have made heterogeneous architec-
tures a popular idea for increasing parallelism with electrical
power and cost efficiency. Basic heterogeneous architectures
include hybrid systems that combine a traditional CPU with a
coprocessor or accelerator such as a graphics processing unit
(GPU), digital signal processor, field-programmable gate ar-
ray, or other many-core chip. These architectures are becoming
more popular in high-performance computers due to significant
advantages in the performance to electrical power ratio; for ex-
ample, the upgrade from the CPU-only Jaguar Cray XT5 at Oak
Ridge National Laboratory to the hybrid Titan Cray XK7 re-
sulted in ten times the observed performance while requiring
only 19% more electrical power [1]. Not only was Titan the
fastest ranked supercomputer at the time of writing, it was also
ranked number 3 in terms of power efficiency[2, 3].

In order to make effective use of hybrid machines, changes
to the models, algorithms, and/or code are typically required.
For the latter, changes are often required in order to 1) ef-

∗Corresponding author.
Email addresses: brownw@ornl.gov (W. Michael Brown),

yamada@ge.com (Masako Yamada)

ficiently use shared memory parallelism, 2) increase concur-
rency with fine-grain parallelism, and 3) improve data local-
ity, often with explicit code to improve hierarchical memory
use. There has been extensive research along these lines to
demonstrate significant performance improvements for molec-
ular dynamics on hybrid machines [4, 5]. Most of this work
has been focused on pairwise potentials. Although these poten-
tials are commonly employed in the simulation of polymers and
biomolecules, many materials such as metals, covalent solids,
and carbon nanotubes, as well as chemical reactions, are typi-
cally simulated with potential energy models that incorporate
many-body effects. These potentials typically have a much
higher computational cost per atom when compared to pair-
wise potentials. The simulation of materials with many-body
potentials has been described in the context of the “Law of
Constancy of Pain” [6] - the trend in the development of new
many-body potentials has been to use increased CPU speeds
and core counts not for faster simulations, but to simulate with
more complex models that have improved accuracy and trans-
ferability.

For these reasons, it is clearly desirable to develop algo-
rithms and code for simulation of many-body potentials on ac-
celerators [6, 7]. Despite their importance, very little has been
reported in the literature describing methods or performance
gains from acceleration of many-body potentials. In part, this

Preprint submitted to Computer Physics Communications August 5, 2013

could be due to the increased complexity of these models -
the models require multiple and/or nested loops that increase
data dependencies, require changes to the standard neighbor list
used in pairwise models, and can require additional communi-
cations in parallel codes [6]. Implementations of the embedded
atom method (EAM) [8], for use on accelerators and coproces-
sors have been described that led to significant performance im-
provements [9, 10]. The EAM potential incorporates the energy
from embedding an atom into the electron density produced by
its neighbors. In this sense, the EAM potential is many-body
because the electron charge density at each neighboring atom
position must be calculated with a loop over surrounding atoms
within some cutoff. However, this model is somewhat unique
among many-body potentials in that it can still be computed us-
ing only pairwise summations. While this requires additional
interprocess communications during the force computation, we
have shown that parallel implementations on hybrid machines
can maintain significant performance improvements up to the
entire 900 nodes available at the time of study[10].

For other many-body potentials, the data dependencies are
more complex. 3-body interactions are commonly used and re-
quire terms calculated for every triplet of atoms in addition to
every pair. 3-body terms are required for many popular poten-
tials such as MEAM [11], Tersoff [12], REBO [13], AIREBO
[14], Stillinger-Weber [15], Bond-Order Potentials [16], and
others. Although the nested loops required for 3-body terms
are simple to implement for serial calculations, their implemen-
tation for many-core accelerators/coprocessors results in some
complications. The problems arise because non-uniform mem-
ory access and limited per-core memory typically favor shared-
memory atom- or force-decomposition for parallelism. The
naı̈ve implementations of these decompositions result in data
dependencies; the evaluation of each energy term in the summa-
tion is used to update the force of three different atoms. There-
fore, naı̈ve implementations require the use of atomic opera-
tions to prevent memory collisions - erroneous results caused by
simultaneous update of the same location in memory from mul-
tiple threads. Atomic operations are generally undesirable be-
cause of the high latencies and because they introduce random-
ness into the code. Many experienced developers will prefer
deterministic code whenever possible to make debugging feasi-
ble on high performance computers that are constantly chang-
ing out hardware and often changing the software stack.

Alternative implementations can alter the force computation
loops to avoid data dependencies in exchange for increased
computation. These implementations can reduce global mem-
ory access and allow for deterministic code, but the potential
performance gains become limited due to substantial increases
in the amount of floating point operations required. Although
an elegant approach for implementing the Stillinger-Weber po-
tential on GPUs has been described with impressive perfor-
mance [17], the approach is only applicable for simulations of
solid crystals where the neighbors of any given atom do not
change. Therefore, the approach is not applicable to many prob-
lems such as vacancy diffusion or the simulation of liquids.

In this paper, we present a simple approach for computing
3-body interactions using an atom or force decomposition in

shared memory. The approach avoids data dependencies allow-
ing for a deterministic code. We present the changes necessary
for implementation in parallel molecular dynamics codes using
a spatial decomposition. We provide benchmark results on a
hybrid Cray XK7 supercomputer for a 3-body implementation
building on our previous work in the LAMMPS molecular dy-
namics package[18, 19, 10]. We evaluate performance using
the mW water model. The mW water model is comprised of
a single effective particle that preferentially forms four tetra-
hedral bonds. The model has no explicit charges, and hence
no hydrogen-bonds or long-range electrostatic terms, but it re-
produces the quantitative behavior of water as well as or better
than conventional 3, 4 or 5 point charge models. Simulation
rates have been reported that are 180 times faster than the least
expensive 3 point charge model (specifically SPC/E) while the
quantitative agreement of the melting temperature, enthalpy of
melting, liquid-vacuum surface tension and liquid density as a
function of temperature have been shown to be superior to the
SPC, SPC/E, TIP3P, TIP4P and TIP5P models [20]. The orders-
of-magnitude speedup relative to SPC/E has been attributed to:
a) a three-fold reduction in number of atoms, b) the elimination
of expensive k-space solvers and c) the enabling of longer time
steps due to the lack of internal bonds. In particular, the mW
model has been shown to facilitate the observation of sponta-
neous freezing in water [21] with much fewer timesteps relative
to well-known traditional point-charge potentials [22, 23] while
still reproducing many quantitative water properties of interest.
This makes molecular dynamics a more attractive tool to probe
phenomena that span many orders of magnitude of space and/or
time, such as our particular area of interest, which is the study
of ice formation in the presence of surfaces.

Here, we evaluate performance of the mW model with accel-
eration compared to both the standard CPU implementation for
Stillinger-Weber in LAMMPS and simulation with the SPC/E
water model. Our benchmark simulations include periodic wa-
ter boxes and production simulations that are used to study
the microscopic mechanism of droplet freezing on a surface.
For the latter, simulation sizes of one million water molecules
are used in order to probe the types of complex crystalliza-
tion behaviors [24] we have observed experimentally for water
droplets freezing on surfaces [25, 26].

2. Methods

2.1. LAMMPS

Our implementation for 3-body potentials has been per-
formed within the LAMMPS molecular dynamics package
[27]. LAMMPS is parallelized via MPI, using spatial-
decomposition techniques that partition the 3D simulation do-
main into a grid of smaller 3D subdomains, one per MPI pro-
cess. The algorithms we have previously developed for pair-
wise potentials and long-range electrostatics on accelerators/-
coprocessors supporting CUDA or OpenCL in LAMMPS have
been published in detail [18, 19, 10]. LAMMPS supports ac-
celeration for short-range force calculation [18] with optional
acceleration for neighbor list builds and/or (P3M) long-range

2

electrostatics [19]. Neighbor list builds are performed on the
accelerator by first constructing a cell list that is utilized to build
a Verlet list using a radix sort to assert deterministic results. The
van der Waals and short-range electrostatic forces are computed
in a separate kernel. For each particle, the force-accumulation
is performed by one or multiple threads. A default number of
threads is chosen based on the hardware and the potential model
being used for calculation. The short-range calculation can be
performed in single, mixed, or double precision. For mixed pre-
cision, all accumulation is performed in double precision and
forces, torques, energies, and virials are stored in double pre-
cision. For long-range electrostatics, acceleration for P3M is
supported for charge assignment to the mesh and force interpo-
lation. The parallel FFT is performed on the host (see below).
The P3M calculation can be performed in single or double pre-
cision.

All of the statistics computations, thermostats, barostats,
time integration, bond/angle/dihedral/improper calculations,
and any other simulation modifications are performed on the
host. In order to achieve efficient acceleration, these calcula-
tions must be parallelized within each node on the host [18].
This is performed by using multiple MPI processes, each shar-
ing one or more accelerators on a compute node. This approach
has several advantages. Those relevant to the work here include
full compatibility with all of the other routines in LAMMPS
that run on the CPU, the ability to overlap data transfers and
computation from different MPI processes sharing the acceler-
ator, concurrent calculation of non-bonded forces on the accel-
erator and bonded forces on the host, and concurrent execution
of long-range and short-range forces using separate partitions
of MPI processes [10]. The downside of the approach is the
requirement to determine an optimal number of MPI processes
to share the accelerator. This will not necessarily be all cores
available on the node for smaller problem sizes due to the over-
head for sharing an accelerator on current hardware.

2.2. Accelerator Model

For this work, we consider accelerators and coprocessors that
fit a model suited for OpenCL and CUDA. Because OpenCL
and CUDA use different terminology, we have listed equivalent
(in the context of this paper) terms in Table 1. Here, we will
use OpenCL terminology. The host consists of CPU cores and
associated addressable memory. The device is an accelerator
consisting of 1 or more compute units that typically correspond
to processors or multiprocessors in the hardware (note that for
OpenCL this device might be the CPU). Each compute unit has
multiple processing elements that typically correspond to cores
in the processor. The device has global memory that may or
may not be addressable by the CPU, but is shared among all
compute units. Additionally, the device has local memory for
each compute unit that is shared by the processing elements on
the compute unit. Each processing element on the device exe-
cutes instructions from a work-item (this concept is similar to
a thread running on a CPU core). We assume that the compute
unit might require SIMD instructions in hardware; therefore,
branches that could result in divergence of the execution path

Table 1: Equivalent OpenCL and CUDA terminology.

OpenCL CUDA
Compute Unit Multiprocessor

Processing Element Core
Local memory Shared memory

Work-item Thread
Work-group Thread Block

Command Queue Stream

for different work-items are a concern. In this paper, the prob-
lem is referred to as work-item divergence. We also assume
that global memory latencies can be orders of magnitude higher
when compared to local memory access.

We assume that access latencies for coalesced memory will
be much smaller. Coalesced memory access refers to sequen-
tial memory access for data that is correctly aligned in memory.
This will happen, for example, when data needed by individual
processing elements on a compute unit can be “coalesced” into
a larger sequential memory access given an appropriate byte
alignment for the data. Consider a case where each processing
element needs to access one element in the first row of a ma-
trix with arbitrary size. If the matrix is row-major in memory,
the accelerator can potentially use coalesced memory access; if
the matrix is column-major, it cannot. The penalties for incor-
rect alignment or access of non-contiguous memory needed by
processing elements will vary depending on the hardware.

A kernel is a routine compiled for execution on the device.
The work for a kernel is decomposed into a specified number of
work-groups each with a specified number of work-items. Each
work-group executes on only one compute unit. The number of
work-items in a work-group can exceed the number of physical
processing elements on the compute unit, allowing more work-
items to share local memory and the potential to hide memory
access latencies. The number of registers available per work-
item is limited. A device is associated with one or more com-
mand queues. A command queue stores a set of kernel calls
and/or host-device memory transfers that can be executed asyn-
chronously with host code.

2.3. Geryon Library

For our LAMMPS implementation, we have used the Geryon
library that provides a succinct API allowing a single code
to compile with both CUDA and OpenCL [18]. Currently,
OpenCL libraries or beta libraries are available for all major
vendors for CPUs, GPUs, accelerators, and coprocessors. The
Geryon library is available under the Free-BSD license from
http://users.nccs.gov/˜wb8/geryon/index.htm.

2.4. Accelerating 3-Body Interactions

As the name implies, 3-body contributions, U3, to a potential
energy model are evaluated using triplets of atoms instead of
pairs,

3

0

2

4

6

8

10

12

CPU

T
im

e
 (

s)

Other

Output

Comm

Neigh

Force

Figure 1: Time for simulation of a 32000 molecule water box with mW on a
single CPU using 16 cores. The profile shows time for calculation of forces, en-
ergies, and virials (Force), neighbor-list builds (Neigh), MPI communications
(Comm), screen/file (Output), and time integration, statistics and other calcula-
tions (Other).

U3 =

∑

i
∑

j,i
∑

k> j ϕ(pi,p j, pk) ri j < rc, rik < rc

0 otherwise
(1)

for atom position p. and interatomic separation r... rc is set
to enforce a spherical cutoff to allow for implementations with
O(N) time complexity as opposed to O(N3). Pairwise poten-
tials typically only require half of the atoms within the cutoff
to be stored in a neighbor list such that each pair of atoms is
only evaluated once during the force loop. Evaluation of equa-
tion 1 however, requires neighbor lists storing all atoms within
the cutoff. The computational time for simulations employing
3-body interactions is typically almost entirely dominated by
the force calculation loop. Figure 1 shows the profile for sim-
ulation of a 32,000 atom water box with the 3-body Stillinger-
Weber potential. In this case the force calculation is 90% of
the entire simulation on a single node and 95% of this time is
spent on the 3-body interaction. For some 3-body potentials it
is substantially higher. This type of profile is an ideal case for
porting to hybrid machines because of the high upper bound to
performance gains from running a single routine (or small set of
routines) on the accelerator. The observed performance gains,
of course, will depend on how well the routines run on the ac-
celerator - how much fine-grain parallelism can be exposed for
doing as much computation with as little global memory access
as possible.

Although we do use a spatial decomposition for some rou-
tines on the device such as kernels for neighbor lists [18], the
need for efficient non-uniform memory access coupled with
limited per-core memory typically favors shared-memory atom-
or force-decomposition for parallelism of the force computa-
tion loop. In an atom-decomposition, each work-item iter-
ates through the force loop for a single atom. In a force-
decomposition, the terms in the force loop are split between
multiple work-items. In either case, the force is computed as
the gradient of the potential energy with respect to atom po-
sition. For the naı̈ve approach (NA), this means updating the
force on three different atoms for each term calculated for the
summation in equation 1 in order to minimize the computation:

for (i=0; i<n; i++)

num_nbors=get_neighbor_count(i);

for (jj=0; jj<num_nbors; jj++) {

j=neighbor(i,jj);

if (distance(i,j) >= cutoff) continue;

for (kk=jj+1; kk<num_nbors; kk++) {

k=neighbor(i,kk);

if (distance(i,k) >= cutoff) continue;

threebody(i,j,k,fi,fj,fk);

force[i] += fi;

force[j] += fj;

force[k] += fk;

}

}

The NA has several issues that arise when parallelizing for
shared memory: (1) parallelization of the jj and kk loops under
the kk > j j condition results in more computation for work-
items with lower rank, (2) multiple work-items can potentially
update the same force location in memory and therefore atomic
operations are required, (3) because molecular dynamics codes
typically employ methods to sort atoms in memory based on
location (to improve data locality), the number of memory col-
lisions encountered during atomic operations will increase re-
sulting in much higher memory access times, and (4) the num-
ber of global memory updates required is high. Issue (1) can
be addressed with transformations of the 3D matrix of indices
for force computations to balance the amount of work between
threads [28]. Issue (3) can be addressed with a simple reindex-
ing of the i atom based on the work-item rank [19]. Issues (2)
and (4) are more difficult, however. The force updates in the
listing above can be modified to use registers such that there is
only a single global memory access for each iteration of each
of the i, j j, and kk loops. In this case, the number of forces that
must be updated in global memory is n + n · b2

n+bn

2 for n atoms
with bn neighbors per atom. The global memory access prob-
lem is made worse by the requirement to use atomic operations
to store the j and k atom forces. This also has the undesirable
effect of introducing randomness into the code.

Although the NA minimizes computation, memory access is
a much more common bottleneck for force calculations on ac-
celerators and many-core chips. Therefore, approaches that re-
duce memory access in trade for increased computational re-
quirements can improve performance. For pairwise potentials,
this is commonly addressed by doubling the number of force
computations to eliminate the possibility of memory collisions.
For 3-body interactions, a similar approach can be used; how-
ever, it requires more substantial modifications. We refer to
this approach as the redundant computation approach (RCA).
For the RCA, the force computation is parallelized such that
the force on each atom in a given triplet can be computed by
different work-items, each performing some redundant compu-
tations:

for (i=0; i<n; i++)

num_nbors=get_neighbor_count(i);

for (jj=0; jj<num_nbors; jj++) {

4

Figure 2: Illustration of a triplet of atoms across the border of two MPI pro-
cesses. Filled (red) circles denote atoms local to a process; circles without fill
are ghost atoms. For the NA, a single neighbor list is used for every triplet and
interprocess communication is required for force accumulation. For the RCA,
the 3-body interaction loop is calculated over neighbors of neighbors. This re-
quires calculation of neighbor lists for ghost atoms and for the length of the
border to be doubled to 2 · rα.

j=neighbor(i,jj);

if (distance(i,j) >= cutoff) continue;

for (kk=jj+1; kk<num_nbors; kk++) {

k=neighbor(i,kk);

if (distance(i,k) >= cutoff) continue;

threebody_center(i,j,k,fi);

force[i] += fi;

}

num_k_nbors=get_neighbor_count(j);

for (kk=0; kk<num_k_nbors; kk++) {

k=neighbor(j,kk);

if (k == j || k == i) continue;

if (distance(i,k) >= cutoff) continue;

threebody_end(i,j,k,fi);

force[i] += fi;

}

}

In this case, an additional inner loop is added and the force
computation is divided into two separate kernels. The first inner
loop is similar, and handles the case where the j and k atom in
the triplet are both within a distance less than rα, the sum of the
potential cutoff and the neighbor list skin [18]. For the single
triplet illustrated in Figure 2 this loop updates the force when i
equals atom 2. The loop is changed such that only the force for
atom i is updated. Therefore, the force kernel can potentially be
simplified to only include terms relevant to atom i (this depends
on the model used). When i is atom 1 or 3 in Figure 2, the
force must also be updated for the triplet, but in this case, the j
and k atoms are not necessarily within the cutoff. This can be
handled by either increasing the skin such that it is greater than
the cutoff or by looping over neighbors of atom j rather than i
in the inner loop. The latter approach of looping over neighbors
of neighbors (used in the listing), will almost always be more
efficient. Again, a separate kernel with reduced computation
can potentially be used to only calculate terms for the triplet
necessary for the i atom.

When implementing the RCA for multiple accelerators with
distributed memory, additional issues arise. For a spatial de-
composition in MD, each process stores ghost atoms at the bor-
ders of the subdomain that can be within a distance rα of the
local atoms simulated on the process (Figure 2). For the NA,
atoms within the borders have forces with contributions calcu-
lated on two different processes (because only a single neigh-
bor list is used for each triplet). Therefore, communication is
required at every timestep to accumulate forces for the ghost
atoms. For the RCA, however, neighbors of neighbors are used
in the force computation. Therefore, neighbor lists are required
not only for local atoms, but also for ghost atoms when using
the RCA. In order to avoid including the force contribution for
a triplet more than once, the neighbor lists for ghosts must ei-
ther distinguish local and ghost neighbors or the length of the
border must be doubled to allow the forces to be calculated en-
tirely on a single MPI process. The latter increases the amount
of communications for the ghost-atom data exchange, but elim-
inates the need for communication in force accumulation. This
is the approach that we use here.

Depending on the study, calculation of energy and virial
terms might be necessary on some or all timesteps. If only
global energies and pressures are needed, they can be calcu-
lated entirely in the threebody center kernel in a manner simi-
lar to the NA. If per-atom energies or stresses are required, the
calculation must occur in both 3-body kernels. In this case, the
kernels will probably have to perform the full 3-body calcula-
tion that is not simplified for the redundant computation. The
RCA requires up to 3X the number of calculations when com-
pared to the NA, requires calculation of neighbor lists for ghost
atoms, and an increase in the number of ghost atoms with a
doubling of the length of the borders. To offset this increase,
however, the number of force updates in global memory is re-
duced from n + n · b2

n+bn

2 to n and the requirement for atomic
operations is eliminated. Additionally, for the RCA described
here, the requirement for interprocess communication for force
accumulation is eliminated.

For the RCA, the nested force computation loop must be par-
allelized across the work-items. For an atom decomposition,
this is done by parallelizing the i loop to assign an atom to each
work-item, with the work-item performing the entire force ac-
cumulation for that atom. This approach can lead to significant
performance gains, however, it is not ideal for GPU accelera-
tors. The first issue is work-item divergence where cores are
effectively idle when j atoms are not within the cutoff. The sec-
ond issue is that this limits the number of work-items that can
be used for a given number of atoms. Accelerators and many-
core chips require a large number of work-items for efficient
performance when compared to traditional CPUs and for many
it is desirable to have many more work-items than cores in or-
der to hide latencies. This is an important concern for HPC
implementations where it is often desirable to scale up to large
node counts, reducing the number of atoms per MPI process to
decrease the time to solution. Although for large atom counts
a difference is not observed, we have shown that force decom-
positions can provide substantial improvements in parallel effi-

5

 thread| 1 | 2 | 3 | 4 | 5 |...
 atom | i | i | i | i |i+1 |...
 nbor 1| jj | jj |jj+1|jj+1| jj |...
 nbor 2| kk |kk+1| kk |kk+1| kk |...

Figure 3: Illustration showing the atom and neighbor indices for the static reg-
ular force decomposition.

ciency for pairwise models [19].
Force decompositions also divide the inner loops among

work-items. This increases the number of work-items avail-
able to keep cores busy and also amortizes the access laten-
cies. The tradeoff is an increase in the amount of computation
required for additional reductions and in some cases, the re-
quirement for additional work-item synchronizations [19]. We
tested many different combinations for parallelizing the j j and
kk loops between an arbitrary number of work-items. Work-
item divergence occurring at the cutoff check in the j j loop is
a significant concern, because this divergence occurs for the
duration of the inner kk loop. Therefore, we tested paralleliza-
tion where the j j loop was split across a number of work-items
equal to the number of cores that are restricted to perform the
same instruction. This eliminates divergence at the j j loop cut-
off check, but because this number is high for the Nvidia hard-
ware used (32), the overhead for the reduction was too large at
typical neighbor list sizes. In our tests, we observed that the
optimal number of work-items for parallelization of both the j j
and kk loops was determined by the neighbor list size. Based on
these results, we implemented a static regular force decomposi-
tion (SRFD) where a single parameter is used to determine the
number of work-items for the parallelization; the parameter is
constant for all atoms throughout the duration of the simulation.
Although this works well for Nvidia hardware, the advantages
of the approach might be vendor dependent. We have left this
for a future study.

In the SRFD, a single work-item parameter, wn is speci-
fied. The optimal choice for wn depends on the neighbor list
size and the hardware, however, defaults are chosen at runtime
in LAMMPS based on the typical neighbor list size and the
detected hardware. The force accumulation for each atom is
performed by w2

n work-items with wn work-items performing
the innermost (kk) loop for each neighbor, j j (Figure 3). The
neighbors are stored in memory such that wn neighbors for an
atom are contiguous in memory and such that the neighbors
for i and i + 1 are contiguous. In the case where wn = 1, the
SRFD is equivalent to an atom decomposition. The condition
that kk > j j for the innermost loop in the RCA listing will
lead to an imbalance in the amount of computation assigned
to each work-item. This can potentially be addressed by loop-
ing from 0 to jnum − 1 and only computing the force when
mod(j j + kk, 2) = 0 when j j > kk or mod(j j + kk, 1) = 0
when j j < kk [27]. This approach can balance the amount of
computation for each work-item if implemented in a manner
that does not exacerbate work-item divergence. The SRFD ap-
proach decreases the impact from work-item divergence in our
tests and allows for substantially better performance at smaller

atom counts.

2.5. Accelerating Stillinger-Weber

For this paper, we have chosen to evaluate acceleration of
3-body interactions using the RCA with SRFD parallelism for
the Stillinger-Weber potential. The Stillinger-Weber model was
first introduced in 1985 to probe the behaviors of four-bonded
monoatomic systems such as carbon, silicon and germanium
[15]. More recently, it has been parameterized to represent wa-
ter molecules, which although multi-atomic, share many funda-
mental properties with elemental silicon and germanium. The
tunable parameters of mW water have been optimized to yield
tetrahedral ordering in between that of carbon and silicon; this
lead to comparable or better accuracy than the most popular
point-charge models at orders-of-magnitude faster wall-clock
time [20].

The Stillinger-Weber potential is given by,

U =
∑

i

∑
j>i

ϕ2(ri j)+∑
i

∑
j,i

∑
k> j

ϕ3(ri j, rik, θ jik) (2)

ϕ2(ri j) =Ai jϵi j

[
Bi j(
σi j

ri j
)pi j − (

σi j

ri j
)qi j

]
·

exp
(

σi j

ri j − ai jσi j

)
(3)

ϕ3(ri j, rik, θ jik) =λ jikϵ jik

[
cos θ jik − cos θ0 jik

]2 ·

exp
(
γi jσi j

ri j − ai jσi j

)
exp

(
γikσik

rik − aikσik

)
, (4)

where i indexes the center atom, θ jik the angle between the
atoms, and ri j and rik give the interatomic separations. The
other letters denote empirical parameters for the element types
based on the model. The Stillinger-Weber potential consists
of a 2-body term, ϕ2, and a 3-body term, ϕ3. In order to pro-
vide a balanced computational workload to work-items for the
Stillinger-Weber model, three kernels are used. This includes a
kernel for the 2-body term, implemented similar to other accel-
erated pairwise potentials in LAMMPS [18], and two kernels
for the 3-body terms and described above for the RCA. Be-
cause there are no data dependencies for these kernels, they can
be calculated independently and concurrently. The code can be
compiled for concurrent force calculation (CFC) in which case
the 2-body and threebody center kernels are launched in a sep-
arate command queue from the threebody end kernel in order
to allow for concurrent execution. This is potentially advanta-
geous for small atom counts in order to increase the number of
work-items in flight at any given time. Because this requires an
additional synchronization and reduction, CFC is optional and
for testing purposes.

A default wn parameter for the SRFD is chosen at runtime
based on the hardware or the user can optionally specify this
parameter. The wn parameter determines the parallelization of
the RCA as described above and also the number of work-items

6

Figure 4: Close-up view of million molecule mW water droplet on tunable
contact-angle surface. Lines indicate bonds among the mW water molecules.
White denotes average particle mobility, red denotes higher-than-average par-
ticle mobility and blue denotes lower-than-average particle mobility. Rendered
with VMD [29].

that perform the force accumulation for the 2-body term as de-
scribed previously [19]. Neighbor list calculation is performed
on the device as described previously [18] with the exception
that neighbor lists are also calculated for ghost atoms. As dis-
cussed above, interprocess communication for ghost-atom data
exchange is removed from the accelerated version in trade for a
border length for ghost-atom data exchange that is double that
in the CPU-only version.

2.6. Benchmarks

We have benchmarked the strong and weak scaling perfor-
mance of bulk water in a cubic box with periodic boundary
conditions, comparing the performance of mW water against
that of one of the least expensive point charge models, SPC/E
[30]. We have also benchmarked the performance of a pro-
duction run comprising a water droplet with one million mW
molecules placed on a tunable contact-angle surface, where the
walls and ceiling of the simulation box are reflecting (Figure 4)
[31]. For the droplet, we model one million molecules, which
is orders of magnitude larger than typical simulations, to mini-
mize any finite-size effects that could lead to the erroneous in-
terpretation of simulation results. In particular, given our desire
to probe spontaneous nucleation behaviors in droplets, our sys-
tem size must be at least several times larger than the critical
nucleus size. Moreover, the surface-area-to-bulk ratio must be
sufficiently small that surface effects not unduly dominate.

All of the simulations were conducted using the canonical
ensemble where the relaxation time of the Nose-Hoover ther-
mostat was 1 ps. For mW, the time step was 10 fs and for
SPC/E, it was 1 fs. A neighbor list skin of 1Å was used. For
mW, neighbor list builds were forced to be at least 2 timesteps
apart, with checking every 2 timesteps for atom movement re-
quiring a new build. For SPCE/E, the builds were forced to be
at least 6 timesteps apart. The LAMMPS “grid numa” option

was used to optimize MPI process mapping to reduce off-node
communications [10]. A warmup run of 20 timesteps was used
followed by a 400 timestep run used for the timings presented
here. Single precision FFTs were used for long-range electro-
statics to reduce MPI communications. All benchmarks using
the GPUs on Titan were performed with mixed precision as op-
posed to full double precision for the CPU-only runs [18].

2.7. Titan XK7 Supercomputer

For the benchmark simulations performed here, we used the
Titan supercomputer at Oak Ridge National Laboratory. Titan
is a Cray XK7 computer with 18688 compute nodes, 512 XIO
nodes, and a Gemini interconnect. Each node holds a single 16-
core AMD Opteron 6274 running at 2.2 GHz with 32GB ECC
DDR3 SDRAM. The Opteron is connected to a Tesla K20X via
PCI-e 2.0. The K20X has 2688 compute cores running at 732
MHz with 6GB of GDDR5 SDRAM. The Gemini interconnect
is connected in a 3-D torus topology and has 1-2 microsecond
latency for point-to-point messages and 20 GB/s of injection
bandwidth per node. At the time of the benchmarks, Titan was
running version 4.1u2 of the Cray Linux Environment compiled
with version 304.47.13 of the Nvidia CUDA driver. The 2013
April 24th version of LAMMPS was used with the modifica-
tions described below. The code was compiled using version
4.1.40 of the Cray GNU programming environment with gcc
version 4.7.2 and nvcc version 5.0. The Nvidia proxy server
was used for runs with more than one MPI process sharing the
device in order to allow for context sharing and concurrent ex-
ecution/data transfer from different processes. Runs using less
than 9 MPI processes per node were launched with the core
affinity set so that only 1 core per AMD Bulldozer module was
used.

3. Results

Figure 1 shows the timing results for simulation of a 32,000
molecule water box with LAMMPS when run on the CPU of
a single XK7 node. The simulation uses the Stillinger-Weber
potential with the mW parameterization. In this case, 16 cores
are used and the entire simulation time is 11.4 seconds for 400
timesteps. The force calculation is 89.6% of the simulation
time with 6.2% for neighbor list builds, 3.65% for MPI com-
munications, and 0.55% for time integration and other statistics
calculations. Most of the force calculation time, 95%, is for
calculation of 3-body interactions.

The results with acceleration using the RCA are shown in
Figure 5. For a single MPI process using an atom decompo-
sition (wn = 1), the simulation time is reduced to 3.66 sec-
onds with 1.47 seconds for the force computation and 0.89 sec-
onds for the neighbor list build. Most of the time for force
computation, 96.8%, is used for calculation of 3-body interac-
tions. Although we are performing the neighbor list build on
the accelerator, the time required is 26% slower than neighbor
list calculation on 16 cores using the CPU. In part this is due
to the increase in the number of atoms requiring neighbor list
builds since lists are also required for ghost atoms. Performing

7

Force

0

0.5

1

1.5

2

2.5

3

3.5

4

PPN=1,

wn=1

PPN=1,

wn=2

PPN=8,

wn=2

T
im

e
 (

s)

Cast/Pack

Data Transfer

Force+Neigh+Data

Other

Output

Comm

Neigh

Figure 5: Time for simulation of a 32000 molecule water box with mW on
a single XK7 node with acceleration. PPN is the number of MPI processes
sharing the accelerator. wn = 1 is an atom decomposition and wn = 2 is a
force decomposition with 4 threads assigned to each atom. The profile shows
time for calculation of forces, energies, and virials (Force), neighbor-list builds
(Neigh), MPI communications or memory copies (Comm), screen/file output
(Output), time integration, statistics and other calculations (Other), host-device
data transfer (Data Transfer), and time on the host for casting and packing data
for transfer (Cast/Pack). “Force+Neigh+Data” combines “Force”, “Neigh”,
“Data Transfer”, and “Cast/Pack” when individual timings are not available.
Here, acceleration is for “Force” and “Neigh” calculations.

the neighbor build on the accelerator reduces substantially the
amount of host-device data transfer required, however, since the
neighbor list storage typically dominates the memory usage for
molecular dynamics. With neighbor list builds on the GPU, the
host-device data transfer represents 4.1% of the total simulation
time.

Using a force decomposition with wn = 2 reduces the time
for force calculation by 20%. Although there is additional code
required for storage of neighbors to allow for contiguous mem-
ory access with the SRFD, the neighbor list build time is not
impacted. The choice of wn = 2 will depend on the device, the
cutoff, and the number of particles on the accelerator. Devices
with more cores and devices that benefit from oversubscribing
the cores will favor larger values of wn. Models with larger cut-
offs see much more substantial benefits with higher values of
wn. For the model and devices used here, wn = 2 performed
best at larger molecule counts with a 12% reduction in force
time with 256000 molecules and a 40.6% with 8000 molecules.
For 4000 and 2000 molecules on the device, wn = 4 performed
best with up to a 78.6% reduction in force calculation time.

Running with a single MPI process using the device has the
advantage that there is no overhead from scheduling or han-
dling driver requests from multiple processes. Additionally, in
the single node case in Figure 5, MPI communications are re-
placed with memory copies. (Because LAMMPS is intended as
a parallel code, atoms across periodic boundaries are treated as
ghost atoms, even when using a single MPI task. Therefore, the
packing of atom data at borders for communication still occurs,
although memory copies are used in place of the MPI calls).
When using a single process however, routines on the CPU,

such as time integration, thermostats, barostats, and other statis-
tics, are performed in serial. In addition to parallelizing these
routines, running multiple MPI processes sharing the accelera-
tor has the advantage of allowing pipelining for host-device data
transfers and kernel execution. That is, the device can overlap
host-device communications from one process with force calcu-
lations from another. Due to these benefits, we see a significant
performance improvement when sharing the device between
multiple MPI processes. For the single node 32000 molecule
water box simulation in Figure 5, there is a 27.5% reduction in
overall simulation time when using 8 MPI processes. In this
case, using the accelerators on the XK7 results in a speedup
of 4.68. 17.8% of the simulation time is spent in various CPU
calculations with another 9% required for interprocess commu-
nication. We note that there is a slight decrease in the time for
MPI communications versus the single process memory copies
and data packing. Because the amount of data per MPI process
for exchange of ghost-atom forces scales sublinearly for a fixed-
size simulation, the communication and data-packing time can
be reduced when using multiple processes running on a single
node (this, of course, will depend on the hardware and, in the
case of multiple nodes, can result in slower times despite the
reduction in data).

We also tested LAMMPS compiled to allow concurrent force
calculation (CFC) in which case the device can choose to
run multiple force calculation kernels concurrently on the de-
vice. Although we did see some performance improvement for
smaller molecule counts with a single MPI process, in most
cases there was a noticeable performance degradation from the
additional synchronization and reduction overhead. The ap-
proach was never faster when using multiple MPI processes
sharing the device (in which case kernels from different pro-
cesses can run concurrently) and therefore we have not enabled
this option in LAMMPS.

Results from parallel simulations using multiple GPUs are
shown in Figure 6. In the strong scaling tests, a fixed simula-
tion size of 256000 molecules is benchmarked using between 1
and 128 nodes. The strong scaling benchmarks test the ability
to reduce the time to solution for a given simulation. For the
mW model on a single node, the simulation rate is 5.44 times
faster when using acceleration. On 128 nodes, this speedup is
reduced to 1.48 with a simulation rate slightly over 0.5 µs per
day. This reduction in relative performance on the GPU device
is expected at lower molecule counts; more work is required on
each node in order to effectively utilize the thousands of cores
on each accelerator. In the weak scaling tests, the number of
molecules per node is held constant at 32000; this benchmarks
the ability to run larger simulations on more nodes. In this case,
the simulations with acceleration are 4.71 times faster on a sin-
gle node and 3.52 times faster on 1024 nodes resulting in a par-
allel efficiency of 74.7%.

The mW model is intended to allow faster simulations of wa-
ter with coarse-grain simulations that reduce the number of par-
ticles and allow for larger timesteps. Additionally, long-range
electrostatic terms are not included. In order to maintain accu-
racy, a 3-body potential is used. Therefore, we also compared
performance to simulation with the SPC/E water model. For

8

0

1

10

100

1,000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

n
s/
d
a
y

Nodes

mW + GPU

mW

Ideal

SPC/E + GPU

SPC/E

0.10

1.00

10.00

100.00

1,000.00

1 2 4 8 16 32 64 128

n
s/
d
a
y

Figure 6: Simulation rates for a fixed-size 256K molecule water box in parallel (Left) and a scaled-size water box with 32K molecules per node (Right). Parallel
simulation rates with ideal efficiency would have a slope equal to that of the green line in each plot.

Table 2: Summary of best speedups versus running on a single XK7 CPU for
CPU-only and accelerated runs. Simulation is 400 timesteps for a 1 million
molecule droplet. The speedups are calculated based on the single node loop
time of 440.3 seconds.

1 node 64 nodes
Test case Cores Speedup Cores Speedup
XK7 w/out GPU 16 1.0 1024 41.6
XK7 w/ GPU 16 6.6 512 211.0

the strong scaling, GPU acceleration for the SPC/E model im-
proves performance on a single node by 4.24X and by 1.89X
on 128 nodes. Although the short-range force calculation in
SPC/E is a smaller fraction of the simulation time, GPU ac-
celeration still provides significant improvements because of
efficient overlap of short-range, bond, and long-range forces
with concurrent CPU and accelerator calculations [19]. Ad-
ditionally, the number of particles is higher in the SPC/E case,
with 3 times the number atoms for the same number of water
molecules. For weak scaling, however, the parallel efficiency
is impacted by the effectively all-to-all communications for the
FFT-based Poisson solve. The speedup on 1 node is 4.18 versus
1.86 on 1024 nodes. Although there are methods to reduce the
impact of the long-range electrostatics solve (such as multiple
timestepping), the mW model offers speedups of over two or-
ders of magnitude due to the coarse-grain model employed and
the absence of long-range electrostatics.

Specifically, the simulation loop time on a single XK7
node with 256K molecules is 4.8 times faster when using the
mW model instead of SPC/E; on 128 nodes it is 3.8 times
faster. However, because the coarse-grain mW model allows
a timestep to be used that is 10 times larger, the actual simu-
lation rates are 48 and 38 times faster respectively. Because
the mW model does not consider long-range electrostatics, the
gains from use of the mW model become more pronounced
with larger simulations on more nodes. In the weak scaling
tests, the simulation rate on a single node is 40.5 times faster;
on 1024 nodes it is 127.8 times faster.

For the final evaluation of mW performance, we compared

simulation of a water droplet on a substrate with LAMMPS
scripts used for production simulations. The simulations con-
sist of a 1 million molecule water droplet interacting with a 9-3
Lennard-Jones wall for the substrate. The results are summa-
rized in Table 2. On a single XK7 node, we are able to achieve
simulation rates that are 6.6 times faster when using accelera-
tion with the RCA. On 64 nodes, the simulations are 5.1 times
faster. The relative performance in this case is slightly bet-
ter than for a bulk water box with a similar molecule count.
This is due to the fact that a perfectly balanced spatial decom-
position to divide the molecules between processes cannot be
achieved in LAMMPS (which requires rectangular subdomains
for dynamic load balancing) and also because the communica-
tions topology for the simulations is different. For the latter,
the simulation box is factored such that each process only has
four neighbors and there is no division of work in the dimension
normal to the substrate.

4. Discussion

Potential energy models with 3-body interactions are essen-
tial to many studies using molecular dynamics. The develop-
ment of algorithms to run these simulations on hybrid machines
with coprocessors or accelerators is critical to achieving perfor-
mance gains on current and future HPC systems. Because of
the model complexities and additional data dependencies, im-
plementation of 3-body interactions requires more substantial
modifications to traditional MD codes. We have shown, how-
ever, that a conceptually simple approach can be used to re-
duce dramatically global memory access for these models while
eliminating data dependencies to allow for a deterministic code.
Although this approach significantly increases the number of
floating point operations required to perform force calculations,
we have shown that substantial performance gains can still be
realized because of the inherent parallelism in the approach and
the fact that the 3-body interaction typically dominates the sim-
ulation time. This approach can be used for efficient acceler-
ation of many important potentials including MEAM, Tersoff,
REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and
others.

9

Although porting existing models for hybrid machines is im-
portant, if the current trend in computing continues, it will be
necessary to also consider the development of new models that
allow for better data locality with computations that can better
exploit massive concurrency [32]. That is, because clock speeds
are no longer increasing and data movement is becoming the
dominant bottleneck, we cannot expect to continue to get in-
creased performance on future machines that add more cores
without reconsidering the models that are used. Therefore, re-
search into novel approaches for simulation that trade increased
computation for greater accuracy and simulation rates are criti-
cal. For the mW model used here, for example, researchers can
achieve simulation rates that are orders of magnitude higher de-
spite the additional complexity in the model.

Our work for acceleration of Stillinger-Weber can have an
immediate impact on MD employing the mW model. There is
great interest in understanding the microscopic mechanism of
droplets freezing on surfaces, and yet probing this behavior ex-
perimentally is extremely challenging. Molecular dynamics is a
tool that allows such molecular-level interactions to be probed,
but the requirement for large system sizes and in particular
very long simulation times renders modeling cost-prohibitive
in most simulations of rare, activated processes. By acceler-
ating the simulation time, the barrier to adoption is greatly re-
duced, opening up the possibility of using molecular dynamics
as a valuable tool that complements experimental findings.

5. Acknowledgements

This research was conducted in part under the auspices of the
Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC. This research was
also conducted in part under the auspices of the GE Global Re-
search High Performance Computing program. This research
used resources of the Leadership Computing Facility at Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy. Accordingly,
the U.S. Government retains a non-exclusive, royalty-free li-
cense to publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Government pur-
poses. All of the code described in this paper is available
in the open-source LAMMPS software package, available at
http://lammps.sandia.gov/ or by contacting the authors.

References

[1] B. Bland, in: High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, IEEE, pp. 2189–2211.

[2] Top500, Top500 Supercomputer Sites http://www.top500.org, (accessed
May 6, 2013).

[3] Green500, The Green 500 http://www.green500.org, (accessed May 6,
2013).

[4] H. J. D. Baker, J. A., Molecular Informatics 30 (2011) 498–504.
[5] M. Harvey, G. De Fabritiis, Wiley Interdisciplinary Reviews: Computa-

tional Molecular Science 2 (2012) 734–742.
[6] S. J. Plimpton, A. P. Thompson, MRS Bull 37 (2012) 513–521.
[7] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, Journal of Molecular

Graphics and Modeling In Press (2010).

[8] M. S. Daw, M. Baskes, Physical Review Letters 50 (1983) 1285–1288.
[9] I. Morozov, A. Kazennov, R. Bystryi, G. Norman, V. Pisarev, V. Stegailov,

Computer Physics Communications 182 (2011) 1974–1978.
[10] W. M. Brown, T. D. Nguyen, M. Fuentes-Cabrera, J. D. Fowlkes, P. D.

Rack, M. Berger, A. S. Bland, Procedia Comput. Sci. 9 (2012) 186–195.
[11] M. Baskes, Physical review letters 59 (1987) 2666–2669.
[12] J. Tersoff, Physical Review B 37 (1988) 6991.
[13] D. W. Brenner, Physical Review B 42 (1990) 9458.
[14] S. J. Stuart, A. B. Tutein, J. A. Harrison, The Journal of Chemical Physics

112 (2000) 6472.
[15] F. H. Stillinger, T. A. Weber, Physical Review B 31 (1985) 5262.
[16] D. Pettifor, I. Oleinik, Physical Review B 59 (1999) 8487.
[17] C. Hou, J. Xu, P. Wang, W. Huang, X. Wang, Computer Physics Commu-

nications (2013).
[18] W. M. Brown, P. Wang, S. J. Plimpton, A. N. Tharrington, Computer

Physics Communications 182 (2011) 898–911.
[19] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, A. N. Tharrington, Comp.

Phys. Comm. 183 (2012) 449–459.
[20] V. Molinero, E. B. Moore, The Journal of Physical Chemistry B 113

(2008) 4008–4016.
[21] E. B. Moore, V. Molinero, Nature 479 (2011) 506–508.
[22] M. Matsumoto, S. Saito, I. Ohmine, Nature 416 (2002) 409–413.
[23] M. Yamada, S. Mossa, H. E. Stanley, F. Sciortino, Physical review letters

88 (2002) 195701.
[24] D. W. Oxtoby, Journal of Physics: Condensed Matter 4 (1992) 7627.
[25] A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, L. Ge,

A. Dhinojwala, K. R. Conway, V. Bahadur, et al., Langmuir 28 (2012)
3180–3186.

[26] A. Alizadeh, V. Bahadur, A. Kulkarni, M. Yamada, J. A. Ruud, MRS
Bulletin 38 (2013) 407–411.

[27] S. Plimpton, Journal of Computational Physics 117 (1995) 1–19.
[28] J. Sumanth, D. R. Swanson, H. Jiang, in: Proceedings of the 21st annual

international conference on Supercomputing, ACM, pp. 105–115.
[29] W. Humphrey, A. Dalke, K. Schulten, Journal of molecular graphics 14

(1996) 33–38.
[30] H. Berendsen, J. Grigera, T. Straatsma, Journal of Physical Chemistry 91

(1987) 6269–6271.
[31] M. Yamada, A. Alizadeh, B. J. Moore, Submitted (2013).
[32] T. D. Nguyen, J.-M. Y. Carrillo, A. V. Dobrynin, W. M. Brown, Journal

of Chemical Theory and Computation 9 (2012) 73–83.

10

